Popoulation analysis

Presentation of the sampling and a descriptive analysis of the samples collected.

Load packages

list.of.packages <-
  c(
    "tidyverse",
    "devtools",
    "egg",
    "tableHTML",
    "kableExtra",
    "conflicted"
  )

new.packages <-
  list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])]

#Download packages that are not already present in the library
if (length(new.packages))
  install.packages(new.packages)

packages_load <-
  lapply(list.of.packages, require, character.only = TRUE)

#Print warning if there is a problem with installing/loading some of packages
if (any(as.numeric(packages_load) == 0)) {
  warning(paste("Package/s: ", paste(list.of.packages[packages_load != TRUE], sep = ", "), "not loaded!"))
} else {
  print("All packages were successfully loaded.")
}
## [1] "All packages were successfully loaded."
rm(list.of.packages, new.packages, packages_load)

#Resolve conflicts
if(c("MASS", "dplyr")%in% installed.packages())conflict_prefer("select", "dplyr")
if(c("stats", "dplyr")%in% installed.packages()){
  conflict_prefer("filter", "dplyr")
  conflict_prefer("select", "dplyr")
}

#if instal is not working try 
#install.packages("package_name", repos = c(CRAN="https://cran.r-project.org/"))

Data import

Import the data and set the levels of the treatment (3 fixed and 3 variable doses) and variety (susceptible to resistant).
A single isolate belonging to 36A2 was excluded from further analysis due to low sample size.

samples <-  
  readRDS(file = here::here("data", "gen data", "final", "gendata.rds") )

samples <-  
samples %>% 
  filter(Genotype != "36A2") 

samples <-  
samples %>% 
  mutate(Genotype = factor(Genotype, levels = c( "8A1","13A2","6A1" )))

samples$date <- as.Date(samples$date, "%m/%d/%Y")

paste( "The data set is consisted of", nrow(samples), "genotyped samples")
## [1] "The data set is consisted of 1286 genotyped samples"
#Prepare the poulation strata initials
samples$treatment <- 
  factor(samples$treatment, levels = c("0", "100","50","IR","BM" ,"MIR"))


samples <- 
  samples %>% 
  mutate(variety = factor(variety, levels =c("KE","BQ", "RO", "SE", "CL","SM"))) 

Sampling dates and number of samples.

samp_dates <- 
samples %>% 
  group_by(year, date) %>% 
  summarise(`No. of Samples` = n()) %>% 
  rename(Year = year, Date = date) 

write_csv(samp_dates, here::here("results", "gen", "Sampling dates&counts.csv"))

samp_dates %>% 
  kableExtra::kable()
Year Date No.ย of Samples
2016 2016-09-24 158
2017 2017-07-03 12
2017 2017-07-14 5
2017 2017-07-20 3
2017 2017-07-31 38
2017 2017-08-10 154
2017 2017-08-23 138
2017 2017-09-13 125
2018 2018-08-20 3
2018 2018-08-28 7
2018 2018-09-05 31
2018 2018-09-24 165
2019 2019-08-14 250
2019 2019-08-27 197
s_tab <- 
 samples %>% 
   group_by(year,variety, treatment) %>% 
   summarise(count = n()) %>% 
   spread(variety, count) %>% 
  rename(Year = year,
         Prog. = treatment) %>% 
  replace(is.na(.), 0) %>% 
  ungroup()

write_csv(s_tab, here::here("results", "gen", "Summary of isolates.csv"))
# s_tab %>% 
# kable(format = "html") %>% 
# kableExtra::kable_styling(latex_options = "striped") 

years <- 
s_tab %>% 
group_by(Year) %>% 
  summarise(counts =n()) %>% 
  dplyr::select(counts) %>% 
  unlist
year_names <-  unique(s_tab$Year)

tab <- 
dplyr::select(s_tab, -c(Year)) %>% 
tableHTML::tableHTML(., 
                     rownames = FALSE,
                     row_groups = list(c(years), c(year_names)),
                     # widths = c(50, 60, 70, rep(40, 6))
                     ) %>% 
   # add_css_header(css = list('background-color', 'lightgray'), headers = c(1:ncol(s_tab)+1)) %>% 
  add_css_row(css = list('background-color', 'lightgray'), 
              rows = c(which(s_tab$Year %in% c(2017, 2019))+1)) %>% 
  add_theme('scientific')%>% 
  tableHTML_to_image(.,file =here::here("results", "gen", "Summary of isolates.png"),
                     type = "png")

rm(years, s_tab)
Table1

Table1

Frequency charts

The code

# plot successful fin
samples$plotID <- 1
line_size <- 0.13


cbbPalette <-  c ("#ffff33", "#3399ff","#ff33cc")

dis_obs <- readRDS(file = here::here("data", "disease", "dis_obs.rds") )

p_dis <- 
dplyr::filter(dis_obs, treatment == "Control") %>%
  mutate(treatment = "Control plots") %>% 
  group_by(treatment, variety, year, julian_day) %>%
  summarise(rating = mean(obs)) %>% 
  ggplot(aes(x = julian_day,
             y = rating,
             colour = variety,
             group = variety)) +
  geom_line(aes(y = rating),
            size = 0.2,
            linetype = "dotted") +
  # scale_x_continuous(labels = c())+
  scale_y_continuous(limits = c(0, 100))+
  geom_line(size = 0.3) +
  ylab("Disease rating (%)") +
  xlab("Julian day of year") +
  labs(colour = "Variety:")+
  facet_wrap(~year, ncol = 1)+
  theme_article()+
  theme(legend.position = "bottom")+
  guides(fill=guide_legend(nrow=2,byrow=TRUE),
         colour = guide_legend(title.position = "top"))

# remove tuber samples
p_gen <- 

ggplot(samples,aes(julian_day, fill = Genotype))+
  # geom_col(aes(julian_day, plotID, fill = Genotype), width = 5, colour = "black", size = 0.1)+
  geom_bar(stat = "count", position = "stack", width = 6,colour = "black", size = line_size)+
  
  facet_wrap(~year, ncol = 1)+
  xlab("Date")+
  ylab("No. of samples")+
  # ggtitle("")+
  scale_fill_manual(values=cbbPalette)+
  theme_article()+
  theme( legend.position = "bottom",
        legend.direction = "horizontal")+
  guides(fill=guide_legend(nrow=2,byrow=TRUE,title.position = "top"))+
  ggsave(filename= here::here("results", "gen", "freq", "Genotype per sampling vertical.png"), 
         width = 4, height =6, dpi = 620)


p_var <- 

ggplot(samples,aes(julian_day, fill = variety))+
  geom_bar(stat = "count", position = "stack", width = 6,colour = "black", size = line_size)+
  facet_wrap(~year, ncol = 1)+
  xlab("Date")+
  # ylab("No. of samples")+
  ylab("")+
  # ggtitle("")+
  theme_article()+
  # labs(fill = "Variety")+
  scale_fill_brewer("Variety:", palette = "Dark2") +
  theme(
    axis.title.y=element_blank(),
    axis.text.y=element_blank(),
    legend.position = "bottom",
    legend.direction = "horizontal")+
  guides(fill=guide_legend(nrow=2,byrow=TRUE,title.position = "top"))+
  # theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
  #       panel.background = element_blank(), axis.line = element_line(colour = "black"))+
  ggsave(filename= here::here("results", "gen", "freq", "Samples per date and variety.png"), 
         width = 3, height = 6, dpi = 620)






#plot samples per treatment/fixed reduced dose
 p_prog <- 
  
  ggplot(samples,aes(julian_day, fill = treatment))+
  geom_bar(stat = "count", position = "stack", width = 6,colour = "black", size = line_size)+
  facet_wrap(~year, ncol = 1)+
  xlab("Date")+
  # ylab("No. of samples")+
  ylab("")+
  scale_fill_brewer("Prog.:", palette = "Dark2") +
  theme_article()+
  theme(
    axis.title.y=element_blank(),
    axis.text.y=element_blank(),
    legend.position = "bottom",
    legend.direction = "horizontal")+
  guides(fill=guide_legend(nrow=2,byrow=TRUE,title.position = "top"))+
  ggsave(filename= here::here("results", "gen", "freq", "Treatment dose per sampling vertical.png"), 
         width = 4, height =6, dpi = 620)

plot_list <- list(p_dis,p_gen, p_var, p_prog)

ggpubr::ggarrange(plotlist = plot_list, 
                   widths = c(1,1.15,1,1),
                  # labels = c("r","rr"),
                   ncol = 5)+
  ggsave(filename= here::here("results", "gen", "freq", "G and v sampling vertical.png"),
         width = 9, height =7, dpi = 620)

The code

GenPalette <- c ("#ffff33", "#3399ff","#ff33cc")
lab_size <-  3
lab_pos_y <- -0.04

gen_prop <- 
  samples %>%
  group_by(variety) %>% 
  count(Genotype, variety) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts)) %>% 
  mutate(perc = round(prop * 100,1)) %>% 
  arrange(desc(variety))



labels <- 
  samples %>%
  count( variety) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts)) %>% 
  dplyr::select(counts) %>% 
  sapply( .,  function(x) paste0("n=", x )) %>% 
  as.vector()

f_v <-  
  ggplot(gen_prop, aes(variety, prop, fill = Genotype)) +
  geom_hline(
    yintercept = seq(0 , 1, 0.1),
    size = 0.2,
    alpha = 0.8,
    color = "gray",
    linetype = "dotted"
  )+
  geom_bar(stat = "identity",
           width = 0.6,
           position = position_fill(reverse = TRUE),
           color = "black",
           size = .1) +
  ylab("Frequency") +
  xlab("Variety")  +
  annotate(
    geom = "text",
    label = rev(labels),
    x = unique(gen_prop$variety),
    y = lab_pos_y,
    size = lab_size
  )+ 
  scale_fill_manual(values=GenPalette)+
  theme_bw()+
  egg::theme_article()+
  scale_y_continuous(limits = c(-0.09, 1),
                     # expand = c(0, 0),
                     breaks = seq(0, 1, 0.1))+
  theme(legend.position = "top",
        axis.title.y=element_blank()
  )


gen_prop_trt <-
  samples %>%
  
  
  group_by(treatment) %>% 
  count(Genotype, treatment) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts))%>% 
  mutate(perc = round(prop * 100,1))

labels <-
  samples %>%
  
  count(treatment) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts)) %>%
  dplyr::select(counts) %>%
  sapply(.,  function(x)
    paste0("n=", x)) %>%
  as.vector()

f_t <-
  ggplot(gen_prop_trt, aes(treatment, prop, fill = Genotype)) +
  geom_hline(
    yintercept = seq(0 , 1, 0.1),
    size = 0.2,
    alpha = 0.8,
    color = "gray",
    linetype = "dotted"
  ) +
  geom_bar(
    stat = "identity",
    width = 0.6,
    position = position_fill(reverse = TRUE),
    color = "black",
    size = .1
  ) +
  ylab("Proportion") +
  xlab("Treatment")  +
  annotate(
    geom = "text",
    label = labels,
    x = unique(gen_prop_trt$treatment),
    y = lab_pos_y,
    size = lab_size
  ) +
  scale_fill_manual(values = GenPalette) +
  egg::theme_article() +
  scale_y_continuous(limits = c(-0.08, 1),
                     # expand = c(0, 0),
                     breaks = seq(0, 1, 0.1)) +
  theme(axis.title.y = element_blank(),
        legend.position = "none")

#Years
gen_prop_year<- 
  samples %>%
  
   
  group_by(year) %>% 
  count(Genotype, year) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts))%>% 
  mutate(perc = round(prop * 100,1))

labels <- 
  samples %>%
  count( year) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts)) %>% 
  dplyr::select(counts) %>% 
  sapply( .,  function(x) paste0("n=", x )) %>% 
  as.vector()

f_y <-
  ggplot(gen_prop_year, aes(year, prop, fill = Genotype)) +
  geom_hline(
    yintercept = seq(0 , 1, 0.1),
    size = 0.2,
    alpha = 0.8,
    color = "gray",
    linetype = "solid"
  ) +
  geom_bar(
    stat = "identity",
    width = 0.45,
    position = position_fill(reverse = TRUE),
    color = "black",
    size = .1
  ) +
  ylab("Frequency") +
  xlab("Year")  +
  annotate(
    geom = "text",
    label = labels,
    x = unique(gen_prop_year$year),
    y = lab_pos_y,
    size = lab_size
  ) +
  egg::theme_article() +
  scale_y_continuous(
    limits = c(-0.09, 1),
    # expand = c(0, 0),
    breaks = seq(0, 1, 0.1)
  ) +
  scale_fill_manual(values = GenPalette) +
  theme(axis.title.y = element_blank(),
        legend.position = "none")


plotls <- list(f_v, f_t, f_y)

saveRDS(plotls,file = here::here("results", "gen", "freq", "freq_plots.RDS"))


ggpubr::ggarrange(plotlist = plotls, 
                  heights = c(1.2,1,1),
                  # labels = c("r","rr"),
                  nrow = 3)+
  ggsave(filename= here::here("results", "gen", "freq", "Freq_all.png"),
         width = 2.9, height =9, dpi = 820)

Frequency tables

gen_prop %>% 
  dplyr::select(c(variety, Genotype, perc)) %>% 
  spread(variety, perc) %>% 
  lapply(., replace_na, 0) %>% tbl_df()%>% 
  kableExtra::kable()
Genotype KE BQ RO SE CL SM
8A1 67.4 64.9 66.2 19.0 17.1 0
13A2 7.2 8.8 8.4 35.1 71.4 88
6A1 25.4 26.3 25.3 46.0 11.4 12
gen_prop_trt %>% 
  dplyr::select(c(treatment, Genotype, perc)) %>% 
  spread(treatment, perc) %>% 
  kableExtra::kable()
Genotype 0 100 50 IR BM MIR
8A1 57.2 45.1 48.5 60.8 55.3 65.8
13A2 16.0 24.8 23.9 15.6 8.8 10.7
6A1 26.8 30.1 27.6 23.6 35.8 23.5
gen_prop_year %>% 
  dplyr::select(c(year, Genotype, perc)) %>% 
  spread(year, perc)  %>% 
  kableExtra::kable(align = "c")
Genotype 2016 2017 2018 2019
8A1 34.2 51.8 90.3 53.7
13A2 46.8 4.2 1.0 25.5
6A1 19.0 44.0 8.7 20.8

The code

var_gen <- 
samples %>%
  filter(year>2016) %>% 
  group_by(date) %>% 
  count(variety) %>%
  rename(counts = n) %>%
  mutate(prop = prop.table(counts)) %>% 
  mutate(perc = round(prop * 100,1)) %>% 
  arrange(desc(variety)) %>% 
  ungroup() 

  
var_count <- 
  var_gen %>% 
  dplyr::select(c(date, variety, counts)) %>% 
  spread(variety, counts)

var_count[ ,-1] <- 
var_count[ ,-1] %>% 
  lapply(., replace_na, 0) %>% tbl_df()

var_count <- 
var_count%>% 
  mutate(Sus = KE + BQ+ RO,
         Med = SE,
         Res = CL + SM)

var_prop <-
  var_gen %>%
  dplyr::select(c(date, variety, perc)) %>%
  spread(variety, perc)

var_prop[, -1] <-
  var_prop[, -1] %>%
  lapply(., replace_na, 0) %>% tbl_df()

var_prop <- 
  var_prop%>% 
  mutate(Sus = KE + BQ+ RO,
         Med = SE,
         Res = CL + SM)

for (i in seq(colnames(var_prop[,-1]))) {
  vec <- var_count[, i + 1] %>% pull %>% as.character() %>% as.list()
  vec_prop <-
    var_prop[, i + 1] %>% pull %>% as.character() %>% as.list()
  
  newvec <- vector()
  for (y in seq(vec)) {
    newvec[y] <- paste0(vec[y], " (", vec_prop[y], ")")
  }
  
  var_count[, i + 1] <- newvec
}

write.csv(var_count, file = here::here("results", "gen", "Samples per variety par sampling date.csv"))
var_count%>% 
  kableExtra::kable(align = "c")
date KE BQ RO SE CL SM Sus Med Res
2017-07-03 12 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 12 (100) 0 (0) 0 (0)
2017-07-14 3 (60) 1 (20) 1 (20) 0 (0) 0 (0) 0 (0) 5 (100) 0 (0) 0 (0)
2017-07-20 1 (33.3) 1 (33.3) 1 (33.3) 0 (0) 0 (0) 0 (0) 3 (99.9) 0 (0) 0 (0)
2017-07-31 30 (78.9) 4 (10.5) 3 (7.9) 1 (2.6) 0 (0) 0 (0) 37 (97.3) 1 (2.6) 0 (0)
2017-08-10 105 (68.2) 20 (13) 23 (14.9) 6 (3.9) 0 (0) 0 (0) 148 (96.1) 6 (3.9) 0 (0)
2017-08-23 104 (75.4) 5 (3.6) 15 (10.9) 13 (9.4) 0 (0) 1 (0.7) 124 (89.9) 13 (9.4) 1 (0.7)
2017-09-13 60 (48) 1 (0.8) 11 (8.8) 34 (27.2) 18 (14.4) 1 (0.8) 72 (57.6) 34 (27.2) 19 (15.2)
2018-08-20 3 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (100) 0 (0) 0 (0)
2018-08-28 4 (57.1) 0 (0) 3 (42.9) 0 (0) 0 (0) 0 (0) 7 (100) 0 (0) 0 (0)
2018-09-05 19 (61.3) 4 (12.9) 8 (25.8) 0 (0) 0 (0) 0 (0) 31 (100) 0 (0) 0 (0)
2018-09-24 97 (58.8) 18 (10.9) 26 (15.8) 19 (11.5) 5 (3) 0 (0) 141 (85.5) 19 (11.5) 5 (3)
2019-08-14 167 (66.8) 36 (14.4) 34 (13.6) 11 (4.4) 2 (0.8) 0 (0) 237 (94.8) 11 (4.4) 2 (0.8)
2019-08-27 87 (44.2) 24 (12.2) 29 (14.7) 40 (20.3) 15 (7.6) 2 (1) 140 (71.1) 40 (20.3) 17 (8.6)

Temporal structure

Proportion og MLG per sampling date.

The code

dis_obs <- 
  filter(dis_obs, year != 2016)

########################################
#sus
#####################################################


sdf <- 
samples %>%
  dplyr::filter( variety %in% c("KE", "BQ","RO" )) %>% 
  dplyr::filter( treatment %in% c( "IR","0")) %>% 
  dplyr::filter( year != 2016)  

temporal_prop_sus <-
sdf %>% 
  group_by(date) %>% 
  count(Genotype) %>%
  rename(counts = n) %>% 
  mutate(prop = prop.table(counts)) %>% 
  mutate(perc = round(prop * 100,1)) %>% 
  select(date, Genotype, perc) %>% 
  spread(., Genotype, perc) %>% 
  replace(is.na(.), 0) %>% 
  arrange(date) %>% 
  add_column( ., Year = format(.$date, "%Y"), .before= "date") %>% 
  mutate("13A2+6A1 (%)" = `13A2` + `6A1`) %>% 
  rename("8A1 (%)" = "8A1",
         "6A1 (%)" = "6A1",
         "13A2 (%)" = "13A2",
         "Sampling Date" = "date")



counts_df_sus <- 
sdf%>%
  group_by(date)%>% 
  count(counts =n())
  
temporal_prop_sus <- 
  add_column( temporal_prop_sus, `No. of Samples` =counts_df_sus$counts, .before= "8A1 (%)")


write_csv(temporal_prop_sus, here::here("results", "gen", "MLG per date sus.csv"))




counts_df_sus$labels <- 
  sapply(counts_df_sus[["counts"]],  function(x) paste0("n=", x )) %>% 
  as.vector()

sdf <- 
left_join(sdf, counts_df_sus, by = c("date")) %>% 
  mutate(set = "Subset")
  
########################################
#all
#####################################################


adf <- 
  samples %>%
  # dplyr::filter( variety %in% c("KE", "BQ","RO" )) %>% 
  dplyr::filter( year != 2016)  

temporal_prop <-
  adf %>% 
  group_by(date) %>% 
  count(Genotype) %>%
  rename(counts = n) %>% 
  mutate(prop = prop.table(counts)) %>% 
  mutate(perc = round(prop * 100,1)) %>% 
  select(date, Genotype, perc) %>% 
  spread(., Genotype, perc) %>% 
  replace(is.na(.), 0) %>% 
  arrange(date) %>% 
  add_column( ., Year = format(.$date, "%Y"), .before= "date") %>% 
  mutate("13A2+6A1 (%)" = `13A2` + `6A1`) %>% 
  rename("8A1 (%)" = "8A1",
         "6A1 (%)" = "6A1",
         "13A2 (%)" = "13A2",
         "Sampling Date" = "date")



counts_df <- 
  adf%>%
  dplyr::filter( year != 2016) %>% 
  group_by(date)%>% 
  count(counts =n())

temporal_prop <- 
  add_column( temporal_prop, `No. of Samples` =counts_df$counts, .before= "8A1 (%)")


write_csv(temporal_prop, here::here("results", "gen", "MLG per date.csv"))


counts_df$labels <- 
  sapply(counts_df[["counts"]],  function(x) paste0("n=", x )) %>% 
  as.vector()

adf <- 
  left_join(adf, counts_df, by = c("date")) %>% 
  mutate(set = "All Samples")

#####################################################
#plot
#####################################################


samples_fig <- 
   bind_rows( adf, sdf)


cbbPalette <- c ( "#ffff33","#3399ff", "#ff33cc")

dis_obs <- 
  dplyr::filter(dis_obs, treatment == "Control") %>%
  mutate(treatment = "Control plots") %>% 
  group_by(treatment, variety, year, julian_day) %>%
  summarise(rating = mean(obs))

ptemp <- 
ggplot() +
  geom_bar(
    data = samples_fig,
    aes(julian_day, fill = Genotype),
    stat = "count",
    position = "fill",
    width = 4.7,
    colour = "black",
    size = line_size
  ) +
  geom_line(
    data = dis_obs,
    aes(
      x = as.numeric(julian_day),
      y = rating / 100,
      colour = variety,
      group = variety
    ),
    size = .4,
    alpha = .6,
    linetype = "solid"
  ) +
  facet_grid( year~ set  ) +
  xlab("Day of year")+
  ylab("Proportion of foliar disease and MLGs")+
  scale_y_continuous(limits = c(-0.132, 1),
                     breaks = seq(0, 1, 0.2)) +
  scale_fill_manual(values=cbbPalette)+
  theme_article()+
  labs(fill = "MLG:",
       color = "Variety")+
  scale_colour_brewer("Variety:",
                      palette = "Dark2")+
  # ## Uncomment for vertical plot
    # geom_text(data = samples_fig,
    #         aes(x = julian_day, y = -0.07, label = labels),
    #         size = 2.2,
    #         check_overlap = FALSE) +

  # theme( legend.position = "bottom",
  #        legend.direction = "horizontal")+
  # guides(fill=guide_legend(nrow=1,byrow=TRUE,title.position = "top"),
  #        color=guide_legend(nrow=2,byrow=TRUE,title.position = "top"))+
  # ggsave(filename= here::here("results", "gen", "freq", "Genotype and DPC per sampling vertical.png"),
  #        width = 5, height =7, dpi = 620)
  # Uncomment for horisontal plot
   facet_grid( set~ year  ) +
  geom_text(data = samples_fig,
            aes(x = julian_day, y = -0.1, label = labels),
            size = 3.4,
            angle = -40) +
  guides(fill=guide_legend(nrow=1,byrow=TRUE,title.position = "top"),
         color=guide_legend(nrow=1,byrow=TRUE,title.position = "top"))+
  theme(text = element_text(size = 15),
        legend.position = "bottom")

ptemp

The code

  ggsave(plot = ptemp, 
         filename= here::here("results", "gen", "freq", "Genotype and DPC per sampling horisontal.png"),
         width = 10, height =6.5, dpi = 620)
session_info()
## - Session info ----------------------------------------------------------
##  setting  value                       
##  version  R version 3.6.3 (2020-02-29)
##  os       Windows 10 x64              
##  system   x86_64, mingw32             
##  ui       RTerm                       
##  language (EN)                        
##  collate  English_United States.1252  
##  ctype    English_United States.1252  
##  tz       Europe/London               
##  date     2020-08-17                  
## 
## - Packages --------------------------------------------------------------
##  package      * version date       lib source        
##  assertthat     0.2.1   2019-03-21 [1] CRAN (R 3.6.1)
##  backports      1.1.5   2019-10-02 [1] CRAN (R 3.6.1)
##  broom          0.5.5   2020-02-29 [1] CRAN (R 3.6.3)
##  callr          3.4.2   2020-02-12 [1] CRAN (R 3.6.3)
##  cellranger     1.1.0   2016-07-27 [1] CRAN (R 3.6.1)
##  cli            2.0.2   2020-02-28 [1] CRAN (R 3.6.3)
##  colorspace     1.4-1   2019-03-18 [1] CRAN (R 3.6.1)
##  conflicted   * 1.0.4   2019-06-21 [1] CRAN (R 3.6.1)
##  cowplot        1.0.0   2019-07-11 [1] CRAN (R 3.6.1)
##  crayon         1.3.4   2017-09-16 [1] CRAN (R 3.6.1)
##  DBI            1.1.0   2019-12-15 [1] CRAN (R 3.6.3)
##  dbplyr         1.4.2   2019-06-17 [1] CRAN (R 3.6.1)
##  desc           1.2.0   2018-05-01 [1] CRAN (R 3.6.1)
##  devtools     * 2.2.2   2020-02-17 [1] CRAN (R 3.6.3)
##  digest         0.6.25  2020-02-23 [1] CRAN (R 3.6.3)
##  dplyr        * 0.8.5   2020-03-07 [1] CRAN (R 3.6.3)
##  egg          * 0.4.5   2019-07-13 [1] CRAN (R 3.6.1)
##  ellipsis       0.3.0   2019-09-20 [1] CRAN (R 3.6.1)
##  evaluate       0.14    2019-05-28 [1] CRAN (R 3.6.1)
##  fansi          0.4.1   2020-01-08 [1] CRAN (R 3.6.3)
##  farver         2.0.3   2020-01-16 [1] CRAN (R 3.6.3)
##  forcats      * 0.4.0   2019-02-17 [1] CRAN (R 3.6.1)
##  fs             1.3.1   2019-05-06 [1] CRAN (R 3.6.1)
##  generics       0.0.2   2018-11-29 [1] CRAN (R 3.6.1)
##  ggplot2      * 3.3.1   2020-05-28 [1] CRAN (R 3.6.3)
##  ggpubr         0.2.4   2019-11-14 [1] CRAN (R 3.6.2)
##  ggsignif       0.6.0   2019-08-08 [1] CRAN (R 3.6.1)
##  glue           1.4.0   2020-04-03 [1] CRAN (R 3.6.3)
##  gridExtra    * 2.3     2017-09-09 [1] CRAN (R 3.6.1)
##  gtable         0.3.0   2019-03-25 [1] CRAN (R 3.6.1)
##  haven          2.3.0   2020-05-24 [1] CRAN (R 3.6.3)
##  here           0.1     2017-05-28 [1] CRAN (R 3.6.1)
##  highr          0.8     2019-03-20 [1] CRAN (R 3.6.1)
##  hms            0.5.2   2019-10-30 [1] CRAN (R 3.6.1)
##  htmltools      0.4.0   2019-10-04 [1] CRAN (R 3.6.1)
##  httr           1.4.1   2019-08-05 [1] CRAN (R 3.6.1)
##  jsonlite       1.6.1   2020-02-02 [1] CRAN (R 3.6.3)
##  kableExtra   * 1.1.0   2019-03-16 [1] CRAN (R 3.6.1)
##  knitr          1.25    2019-09-18 [1] CRAN (R 3.6.1)
##  labeling       0.3     2014-08-23 [1] CRAN (R 3.6.0)
##  lattice        0.20-38 2018-11-04 [2] CRAN (R 3.6.3)
##  lifecycle      0.2.0   2020-03-06 [1] CRAN (R 3.6.3)
##  lubridate      1.7.4   2018-04-11 [1] CRAN (R 3.6.1)
##  magrittr       1.5     2014-11-22 [1] CRAN (R 3.6.1)
##  memoise        1.1.0   2017-04-21 [1] CRAN (R 3.6.1)
##  modelr         0.1.5   2019-08-08 [1] CRAN (R 3.6.1)
##  munsell        0.5.0   2018-06-12 [1] CRAN (R 3.6.1)
##  nlme           3.1-144 2020-02-06 [2] CRAN (R 3.6.3)
##  pillar         1.4.3   2019-12-20 [1] CRAN (R 3.6.3)
##  pkgbuild       1.0.6   2019-10-09 [1] CRAN (R 3.6.1)
##  pkgconfig      2.0.3   2019-09-22 [1] CRAN (R 3.6.1)
##  pkgload        1.0.2   2018-10-29 [1] CRAN (R 3.6.1)
##  prettyunits    1.0.2   2015-07-13 [1] CRAN (R 3.6.1)
##  processx       3.4.1   2019-07-18 [1] CRAN (R 3.6.1)
##  ps             1.3.0   2018-12-21 [1] CRAN (R 3.6.1)
##  purrr        * 0.3.3   2019-10-18 [1] CRAN (R 3.6.1)
##  R6             2.4.1   2019-11-12 [1] CRAN (R 3.6.3)
##  RColorBrewer   1.1-2   2014-12-07 [1] CRAN (R 3.6.0)
##  Rcpp           1.0.4.6 2020-04-09 [1] CRAN (R 3.6.3)
##  readr        * 1.3.1   2018-12-21 [1] CRAN (R 3.6.1)
##  readxl         1.3.1   2019-03-13 [1] CRAN (R 3.6.1)
##  remotes        2.1.1   2020-02-15 [1] CRAN (R 3.6.3)
##  reprex         0.3.0   2019-05-16 [1] CRAN (R 3.6.1)
##  rlang          0.4.5   2020-03-01 [1] CRAN (R 3.6.3)
##  rmarkdown      2.1     2020-01-20 [1] CRAN (R 3.6.3)
##  rprojroot      1.3-2   2018-01-03 [1] CRAN (R 3.6.1)
##  rstudioapi     0.11    2020-02-07 [1] CRAN (R 3.6.3)
##  rvest          0.3.5   2019-11-08 [1] CRAN (R 3.6.3)
##  scales         1.1.0   2019-11-18 [1] CRAN (R 3.6.3)
##  sessioninfo    1.1.1   2018-11-05 [1] CRAN (R 3.6.1)
##  stringi        1.4.6   2020-02-17 [1] CRAN (R 3.6.2)
##  stringr      * 1.4.0   2019-02-10 [1] CRAN (R 3.6.1)
##  tableHTML    * 2.0.0   2019-03-16 [1] CRAN (R 3.6.1)
##  testthat       2.2.1   2019-07-25 [1] CRAN (R 3.6.1)
##  tibble       * 3.0.0   2020-03-30 [1] CRAN (R 3.6.3)
##  tidyr        * 1.0.0   2019-09-11 [1] CRAN (R 3.6.1)
##  tidyselect     1.0.0   2020-01-27 [1] CRAN (R 3.6.3)
##  tidyverse    * 1.3.0   2019-11-21 [1] CRAN (R 3.6.3)
##  usethis      * 1.5.1   2019-07-04 [1] CRAN (R 3.6.1)
##  vctrs          0.3.0   2020-05-11 [1] CRAN (R 3.6.3)
##  viridisLite    0.3.0   2018-02-01 [1] CRAN (R 3.6.1)
##  webshot        0.5.1   2018-09-28 [1] CRAN (R 3.6.1)
##  withr          2.1.2   2018-03-15 [1] CRAN (R 3.6.1)
##  xfun           0.10    2019-10-01 [1] CRAN (R 3.6.1)
##  xml2           1.3.2   2020-04-23 [1] CRAN (R 3.6.3)
##  yaml           2.2.0   2018-07-25 [1] CRAN (R 3.6.0)
## 
## [1] C:/Users/mlade/Documents/R/win-library/3.6
## [2] C:/Program Files/R/R-3.6.3/library
Copyright 2018 Mladen Cucak